The cars : Rover P6

Revolution, not evolution

In an era where manufacturers will spend huge amounts of time cultivating their image, ensuring that they do not stray too far from their designated market slots, and that any new products that do represent a step into the unknown, are market researched to the nth degree, it is hard to relate to just how big a leap into the unknown the Rover P6 was for the company back in 1963.

Up to that point in time, The Rover Company was an independent company with the set-in-stone image of the a producer of solid-and-conservative cars for a solid-and-conservative clientele. However, there was a sea change happening within the company, and the very public emergence of the gas turbine cars and the innovative Land-Rover of 1948 demonstrated that Rover were embracing new technology. The transformation of the Rover company would take some time, and sporting prototypes might be good at winning admirers in the press, they did not attract new customers into the fold. The existing range of cars that epitomised British style of the time, the P4 Auntie Rover (of 1950-1964) and the more recent P5 luxury saloons (1959-1973), were beginning to look slightly long in the tooth – and even though they were respected by many existing customers, that base of buyers was ageing rapidly.

The market for middle-management cars was also something of a conservative minefield, and dominated by the larger 3-litre opposition, so epitomised by the big Farina saloons. Rover’s management team knew that in order to survive in the market, they would need to devise something significantly more interesting, as a new generation of post-war ‘baby-boomers’ was emerging.

The Rover 2000 was the product of a new and highly imaginative engineering team that had joined Rover in the 1950s. Their idea was to produce a new and radical car to fight future battles with – the project was officially born in 1956, although Bashford had been dreaming of designing a baseframe car for sometime prior to that. The design team had all but completed their work on the P5 and turned their attention to the P4 replacement – that is, when they were not working on the T3.

Rover needed this shot in the arm, and the company positively encouraged radical thinking. The engineers (led by Peter Wilks, Spen King and Gordon Bashford) had their feet kept in contact with terra firma thanks to the steadying influence of the Wilks brothers, Maurice and Spencer. Had it not been for this intervention, the P6 would undoubtedly been even more revolutionary than it already was (and possibly less saleable). The board ruled out the possibility of using the flat-four and Hydropneumatic suspension the engineers wanted, but they agreed to the body and chassis design, that were a big departure from the norm – let alone what the company had done before.

The ‘shell’ of the car was a fabricated inner monocoque (or baseframe as it became more widely known as), to which all the outer panels were simply bolted onto. The idea of this was the simple renewal of body parts when required – and unlike other cars produced in Britain at the time, in theory, rust would not be the killer it would be on more conventional designs. If the baseframe was solid, all other rust could be treated as purely superficial. Gordon Bashford also had it very much in mind that this system would allow for relatively easy styling changes… such was the success of the Bache styling, however, that the theory was never put into practice.

Rover P6 prototype

This is how the P6 looked in 1958 – David Bache had already decided on the sloping roofline and distinctive window contours. The front end would come under serious scrutiny, not least from upper management. (Picture: ‘The Rover Story’, by Graham Robson).

The suspension was also a big departure for Rover. Up front, the top wishbones act through a cranked linkage onto horizontal coil springs, which were braced against the scuttle – this system was soon called the ’round the corner’ suspension system. The advantage of this system was that it utilized the stiffest part of the car’s structure to absorb suspension loads, but more intriguingly, the design left room to install a gas turbine engine, which the company were still working feverishly on.

King himself recalled, ‘the original concept of the thing was the structure of the car and space for the gas turbine. That idea without necessarily the transverse lower suspension wishbone, I sketched out and then Gordon Bashford, who was a good friend of mine (although he was not working for me then) planned out the thing, I think for both the Rover 2000 and the Turbine car more or less simultaneously.’

Rover P6

At the rear, it had sliding tube de Dion suspension, with fixed-length driveshafts, which was a layout mirrored on the T3 gas turbine car. Spen King developed that system alongside Gordon Bashford, so it was familiar territory for them both. King stated that this system may have been unconventional, but it had very real advantages: ‘The P6 was designed specifically to cure that (lift off oversteer), but it certainly gave a good ride and stuck the wheels on the road well, the geometry was good – there was nothing wrong with it at all.’

The drivetrain was also a new design, and unique to the car throughout its life – as was the newly designed Heron-head inline four-cylinder engine (objected to by the sales people, who thought it was too noisy) of overhead cam design. The new engine was considered essential for the light-footed new car, as the P4 unit was too pedestrian, whilst the Land-Rover engine was simply unsuitable. A new gearbox was also part of the package – and was built in a new government-backed factory in Cardiff (against the wishes of Rover’s management – but that is a different story).

Sadly for Rover, the run up to the announcement of the P6 was marred by the death of the company’s chairman, Maurice Wilks, at the age of 59, on 8 September. He was succeeded by George Farmer.

Clearly visible in this Motor magazine cutaway, is the unique front suspension design. Other  noteworthy features are the baseframe design, overhead cam engine, and DeDion rear suspension.

The Rover P6 was launched on the 9th October 1963, and alongside the Triumph 2000, which – amazingly – was launched within weeks of the new Rover, it redefined the executive car market. The idea that six-cylinder, 3-litre cars were necessary for status conscious motorists was banished to history, as this new Rover (and Triumph rival) could do everything the traditional rivals could, but using less fuel, taking up less road space whilst doing so. In a word, the two-litre executive car had arrived.

The new Rover caused nothing less than a sensation when it was launched – certainly, it was a huge move away from everything that had preceded it. Apart from being entirely new, with no carry-over parts from any other Rover, it was compact (some would say too small inside), technically advanced, and relatively cheap. Also, compared with previous numbers, it was to be built in huge numbers without a drop-off in build quality. Without doubt, it was a clean sheet design, and a £15m gamble that Rover chose to take in order to guarantee future survival. Overnight, the company’s image was lifted from that of a manufacturer of stolid middle-class cars to that of a trendy front running manufacturer.

Introducing the Rover 2000 to the media, William Martin-Hurst, Rover managing director, said: ‘Into this car we have put all our engineering know-how and skills. We have built 15 prototypes , which have been driven in the aggregate more than 445,000 miles in this country and abroad. Pre-production cars have been driven over 200,000 miles and 268,000 miles have been covered at high speed on motorways.’

P6 project leader, the then 43-year old Peter Wilks was quoted by the American Time magazine as saying: ‘This is an engineer’s company. That means nobody pushes engineers around here, but it means we also get the blame.’

The sales department had misgivings about the car (they wanted a larger six-cylinder car), but they were in the minority – the P6 was a huge sales success from day one. There were economic factors at play here, as there had been a demand for more economical cars following the Suez Crisis, and although this was by then a memory, at the time of the P6’s launch in 1963, it was a recent one – and customers looked to trade down to smaller, more economical cars, but without losing the luxury they had become used to. The Solihull plant was expanded to accommodate the new car, and a 550-per-week run was talked about. The sales people thought that this projection was wildly optimistic, but they were soon proved wrong, and by 1964, the plant was already running at full capacity. That same year, dealers were turning customers away (who no doubt headed to their local Triumph dealer instead), who were unprepared to join the queue.

Although Rover chairman George Farmer said of the Rover and Triumph 2000s: ‘They’re different animals.’ His 2000, at any rate, had caught on well enough to make one thing clear: ‘For the next 18 months, our problem is making, not selling,’ he told The Observer newspaper.

Rover P6

A 1970 2000TC: the design matured remarkably well throughout its 14-year production run, and did not rely on any facelifts of any substance to remain fresh.

The press also loved it, and Motor raved about the 2000 in its first road test in 1963. At launch the car cost £1264 and it was not without rivals at this price – in this context, their comments make interesting reading: ‘One has the impression that it was planned by engineers, who are enthusiastic drivers and by stylists who put function before decoration. The result is something of an object lesson to others.’ The King/Bashford chassis also drew the highest praise: ‘…we would put it in the top three among European cars irrespective of price’ – whilst the brakes also drew comment, ‘…among the best we have tried…’

It wasn’t all plain sailing, however, and the new engine’s lack of refinement (when compared to Triumph’s silky smooth ohv straight-six) was all-too evident – and this backed up the misgivings that Maurice Wilks had about the new power unit. Performance and economy were reasonable enough, but it became somewhat thrashy at higher revs – but Rover were pretty conscious of this, anyway, and gave the car a high top gear, which resulted in relaxing and peaceful cruising. Performance figures made interesting reading – the 0-60 time recorded by Motor was 14.6 seconds, whilst the top speed was 104mph. Acceleration was reasonable, but one must wonder what the top speed of the 2000 would have been if the original front end (see picture of the clay styling model, above) had been used.

Sales were brisk, but Rover developed the car throughout its life in order to remain competitive. Such was the instant success of the P6 model that Peter Wilks, co-ordinator of the P6 project and nephew of the recently-deceased Maurice Wilks, was appointed to the board of the Rover company as technical director at the beginning of 1964. In May of that year Bernard Jackman joined Rover as executive director (production), the same month the ageing P4 ceased production. Rover had hoped to sell around 250 cars a week, as it turned out a weekly production rate of 550 cars still could not satisfy demand. Rover’s efforts to ramp up P6 production in 1964 was hampered by a series of industrial disputes over earnings, bonus payments and strikes at outside suppliers. This was to be the Achilles Heel of the British motor industry; when it did produce a winner, industrial disputes would restrict the ability to supply the market and long term it would prove to be crippling to the UK owned motor industry.

On 14 December 1964, Mr William Martin-Hurst, managing director of Rover, sent a Christmas message to employees urging them to show patience, and not to withdraw their labour unconstitutionally. He pointed out that the firm’s financial year, which ended on 1 August, had showed a record for sales and turnover. However despite his appeal for common sense to prevail, the stoppages continued into 1965.

At the Geneva motor show in March 1965, Martin-Hurst said of the P6: ‘We could sell twice as many as we are making at present.’

Demand for the Rover and Triumph 2000s clearly impacted on another British executive car, the Jaguar Mk2. In 1960 Jaguar built 21,436, but by 1963 this was down to 10,253 – and in 1964 declined further to 8074 slumping finally to 4847 in 1965. In 1965 the Rover P6 cost £1298, and the Jaguar Mk2 2.4-litre cost £1389. The smaller engined Jaguar could not even attain 100 mph, a fact that Browns Lane was very aware of, as it continued to refuse to lend any examples of its smallest-engined car to the press for road testing. Of course one could opt for the larger-engined 3.4- and 3.8-litre Jaguars, but extra performance would cost much more. The Jaguar looked dated in comparison with the Rover, and Sir William Lyons had already decided to abandon this sector of the executive car market in favour of developing the XJ4 project.

In June 1965, Rover announced it was taking over Alvis. The positive impact of the P6 on Rover’s finances was visible for all to see when the company’s accounts were revealed the following October. With £205,000 for the full year’s contribution from Alvis, group pre-tax profits in the year ending 31 July went up about £1,100,000 to £3,636,000. In December, a government sponsored commission, called the Motor Industry Joint Study Group headed by a Mr Jack Scamp, reported on the series of industrial disputes at Rovers plant’s, which had restricted P6 production. According to the commission, inadequate consultation and communications helped to impair labour relations at the Rover Company’s Solihull works.

In the 12 months up to the end of May 1965, there were 101 unofficial strikes at the works, which already had a bad history in spite of efforts by management and unions to get at the root of unofficial action. The main recommendation of the commission, was that the management and local union officials should jointly revise the system of works representation and consultation. They found nothing, they said, that common sense and better cooperation could not resolve; but neither side had met the challenge presented by the rapid increase of manpower over the previous two and a half years to man the assembly line producing the Rover 2000.

Expansion had taken place in conditions of intense local demand for labour and the firm had been compelled to take on men with no previous experience in the motor industry. Against this backdrop, the eight unions representing manual workers had worked independently and had even opposed one another instead of working together. The National Union of Vehicle Builders, with the most members, had recently taken steps, with welcome results, to improve the quality of shop stewards and to discipline members who took part in unofficial strikes.

However the Scamp report, like other investigations into poor industrial relation in the UK car industry, simply proved to be a waste of time, money and paper. The disruption went on. It was another stoppage in August 1966 than finally snapped the patience of Bernard Smith, known by his initials as AB, general manager and a director of the Rover company, who publicly called the strike ‘a catastrophe for the company, the workers and the country.’

Overseas goodwill was, ‘a gossamer thread already at breaking strain… In heaven’s name let us get on with the job. We need production now every hour of every week. With all the insecurity of the present economic crisis, it is a tragedy that we should be prevented from making the most of the sales and export opportunities, which will not last for ever… The Rover 2000 has been acclaimed throughout the world. We are under extreme pressure, from our home and export markets, particularly America to meet delivery programmes, and overseas customers will not wait. Many sales are on home-delivery basis.

‘Imagine the frustration of an American arriving with his family-to pick up his car at airport or docks to use on holiday to find it is not available because the factory is on strike. Such a mess ensures that he will never buy another Rover, maybe never a British car again.’

In the autumn of 1966, deflationary measures imposed by the government severely depressed the car market, with BMC being particularly hard hit. Rover saw demand for both the Land Rover and P5 dip, but simply transferred workers to the P6 line which was remarkably unaffected by the prevailing economic conditions. In fact during the year Rover had even introduced a nightshift.

1966 saw the introduction of the 2000TC, which thanks to a useful boost in power, could see 110mph and complete the 0-60 sprint in 11 seconds. Various other small engineering changes were made to the car, including the introduction of improved Girling disc brakes, making the car a nicer proposition to live with. by this time, the car’s reputation for safety and strength was gaining momentum, and the improved performance (it was now decisively quicker than the Triumph 2000) was icing on the cake. Sales remained strong…

Rover P6

Take a successful executive car, shoehorn in a lusty V8, and what do you get? The Police’s favourite car… pushy young executives liked it, too… and thanks to its introduction, sales of the already successful P6 took off like a rocket

Rover P6 interior

The sumptuous P6 interior was treated to a comprehensive revision in 1970. The traditional instrumentation, incorporating a strip speedometer, was replaced by a more sporting design. Either way, the P6 was still a very luxurious place to sit, resplendent with acres of leather and wood.

In December 1966 it was announced that the Leyland Motor Corporation, which included Triumph, was taking over Rover at a cost of £25m. Now Rover was bedfellows with Triumph, although the only real model conflict was in the 2-litre executive sector. In early 1967 Rover was hit by more stoppages and in April 1967 Leyland chairman Sir William Black retired to be replaced by Sir Donald Stokes.

A contemporary magazine article described Rover P6 production as it was in April 1967. ‘When, in 1963, the Rover Company decided to put the advanced 2000 into production a special new factory costing over £10-million was built for the purpose at Lode Lane, Solihull, just outside Birmingham. Here the Rover 2000 is assembled on virtually a single continuous line, in a vast hall, to which mechanical components are brought from other Rover factories in the area. This impressive factory is devoted solely to the assembly of the 2-litre cars, the 3-litre P5 Rovers being built across the road on a circular assembly line. To reduce fire hazards the new paint shop serving the 2000 assembly hall has been separated from it, although it is really a continuation of this building. So painted body parts are carried on an overhead conveyor-line through an enclosed bridge to the main assembly plant.

‘Looking first at the paint shop, it is here that the body panels are passed through the two electro-static spray-booths, in which paint particles leave gravity-fed centrifugal bells and are magnetically adhered onto the earthed panels under the influence of a 120,000-volt electrical system. This method is very economical, because about 98% of the paint arrives where it is wanted instead of some 60% spattering all over the paint booth, and no hand-spraying is involved, except for door apertures etc. on the base unit. Also a very even surface is ensured. Before the final coats of paint go on, primer is smoothed down by the wet-and-dry hand-flatting process and rubbed with chalk blocks to reveal any rough patches, which are then dealt with. The base units of the car are dipped in paint vats, then dried in the usual ovens. After the dip, two surface and two final coats of paint are applied.

‘In the assembly hall the base unit moves upside down along the single assembly line at floor-level while the suspension units and brakes etc, are fitted to it. It is then turned right way up and proceeds along the line for additional components to be fitted. The parts required are brought up to the sides of the assembly line in bins. The engines, each of which has been run for five hours on coal gas at the Acocks Green factory, arrive in Rover’s own lorries at Solihull. Pirelli Cinturato tyres predominate, but some cars go out on Dunlop SPs. After the mechanical components have been fitted to the base unit it moves up from floor-level for more easy attachment of the seats and trim etc.

‘Prior to this, each base unit has had all the necessary holes (62 of them) for door and panel attachment etc. drilled in it by transfer machinery which does all this drilling as one operation, entirely independently of human intervention. This impressive operation is carried out by a couple of Viltool multi-drillers, made in Wolverhampton. It is interesting that before the body panels and doors are attached, each Rover 2000 is started up on petrol and driven to one of three short lines where the wheels are checked for alignment, the lamps are adjusted and the engine and transmission run-up on rollers.

‘Only when the car has been passed as mechanically 100% does it resume the single assembly line, for the body panels to be fitted. All these body parts arrive on overhead gantries in ‘prams’ or big wire-mesh baskets, each ‘pram’ containing all the parts for completing one body. These ‘prams’ are loaded by hand in the paint shop, for dispatch to the appropriate vehicle awaiting final assembly in the assembly hall. As it is essential that the paint containers are absolutely clean before a different colour paint is sprayed from them, panels are sprayed one colour one week and a different colour the following week, parts being stacked up as required. Incidentally six different colours are available in this country and a more vivid range of finishes is provided for Rovers exported to the USA and elsewhere. All these variants, including LHD and RHD cars etc. are provided for on the single assembly line.

‘Various test rigs are at work in the engineering and quality control shops, destruction testing carious components such as road wheels, and Rover have a MIRA crash programme to test body strength in accidents. Rover makes its own seats, carpeting etc. with upholstery in Connolly hide, these parts being made and kept in the main stores at Cardiff to provide more room for the assembly processes at Birmingham so that lorries are continually passing up and down M50 with parts for cars on the Solihull assembly line.

‘The aforesaid prams are attached to the cars and move with them along the continually-moving assembly line, operatives taking out the parts as they are required. After this each car is washed in one of two washers and then goes on one of two lines through the wind-and-rain test, the car being rocked on rollers and having jets of water blown over it at the equivalent of 30 mph while an observer sits inside noting whether any moisture intrudes.

‘The cars, as finished vehicles, leave the assembly hall for testing on Rover’s own 2.25-mile test track. This test track, adjacent to which there is also a jungle-course for giving Land Rovers an ordeal, is invaluable, not only for trying out secret prototype vehicles which are also taken to MIRA for more specialised running, but because every car made at Solihull can be driven there without the need for insurance, trade plates and other complications.

‘When I inquired how far each Rover 2000 was driven in this manner I was told that time is of no account. The cars are brought back for rectification of any faults, in a bay that includes pits for examining the underparts of the vehicle, and tested again until the drivers are quite satisfied with them. This normally takes from three to 30 miles but can, as with Rolls Royce, occupy a day, a week or a month, if this is necessary.

‘After this the completed cars are dried and travel along the waxing lines where they are wax polished and those for export are protected with anti-corrosive protection. Even now the testing isn’t finished. A team of four or five girl drivers takes the newly-polished cars for a final check run on the test track. If all is well, the cars are finally sent along a line for further washing and to have their tool-kits, carpets and wheel trims etc. fitted. These finishing processes are undertaken in the leg of the main hall which is L-shaped. A car park for 2000 vehicles beside the factory accommodates cars and Land Rovers until they are needed for dispatch to places the world over.’

Overall UK car sales at this time were still depressed, but demand for the P6 remained strong. Sales of the Rover P6 during the three months of May, June and July 1967 rose by 31% over the corresponding period in the previous year. Rover sales director, John Carpenter, commented at the time: ‘Our 2000 production line is now working at capacity day and night to keep up
with demand.’

At the end of September 1967 the Rover P5B was announced, the first Rover to use the ex-GM all-alloy V8 engine, although the factor that influenced Rover’s decision to purchase the engine was its ability to fit in the P6 engine bay. By early October Rover was telling the press, ‘We are working on the assumption that this design will form the basis of our engine family for the next ten years at least.’

It was already clear that both Rover and their major component suppliers were gearing themselves for a level of production far in excess of that required for the 3.5-litre P5B alone. Many millions of pounds had been invested in new machinery for the engine section of the Acocks Green plant which would be sharing production of the new engine with Alvis. But the most significant development was the new foundry built by Birmingham Aluminium Casting Company to produce the all alloy cylinder blocks, cylinder heads and timing covers. This had a capacity of 700 cylinder blocks a week and could be rapidly stepped up to over 1000.

The P6 line was working flat out to produce around 800 a week. It was therefore apparent that Rover had sufficient basic new engine capacity available for the whole of their current range of cars.

1968 was a year of change. In January it was announced that the Leyland Motor Corporation was merging with British Motor Holdings to form the British Leyland Motor Corporation, initially headed by Sir George Harriman and later by Sir Donald Stokes. In April, the Rover 3500 was created by slotting in the V8 under the bonnet – the style remained almost unchanged (only an under-bumper air scoop gave the game away), but the driving experience changed remarkably.

Although the Rover 3500 would initially only be available as an automatic, it still had the ability to cover the ground deceptively quickly.

In mid-May BLMC officially came into existence, but Rover had no representatives on the main board, unlike Jaguar and Triumph. In late September Jaguar announced the XJ6 saloon to instant acclaim. Such was the demand for the car that in order to free up capacity, Jaguar withdrew its now ageing 240/340 saloons, the final variation of the Mk2 from the market, thus removing some internal BLMC completion from Rover and Triumph. In fact the less than sparkling Jaguar XJ6 2.8-litre was only marginally more expensive than the Rover P6B 3500, and although the Jaguar was the car of the moment, the Rover may have been better value for money.

In April 1969 Rover chairman Sir George Farmer was belatedly appointed to the BLMC board. In October 1969 William Martin-Hurst retired as Rover managing director and was succeeded by Bernard Smith. It was fortunate for Rover that the P6 was still selling well, for as the 1960s gave way to the ’70s the task of replacing the P6 could not be addressed due to financial problems within British Leyland. By 1970 the P6 had been on the market for six years and by industry standards was due for replacement. British Leyland’s priority was turning around the rump of the former BMC, the Austin Morris division, which in 1969/70 lost some £16m.

By now Triumph had started to lose money as well and BLMC was being kept afloat by the profits of Leyland Vehicles, Jaguar and Rover, profits which were diverted into Austin Morris instead of being re-invested in the companies that generated them in the first place. Rover had to make do with a Mk2 version of the P6, announced in 1970 which featured various cosmetic changes, including the use of the P6B V8 bonnet pressing, which featured twin power bulges, for all models including the four cylinder versions.

A sign of the times and the loss of Rover’s independence was demonstrated in March 1971 with the cancellation of the P8 saloon. Not long after this in July 1971, Rover Technical Director Peter Wilks was forced to retire with failing health and was succeeded by Spen King.

Tragically Peter Wilks was to die the following year at the premature age of 52 years. His early demise has unintentionally led to his contribution to the Rover story being airbrushed out of many histories.

It was not until 1971 that the manual 3500S model was launched (using a strengthened version of the standard P6 gearbox), and thanks to its arrival, sales continued to rise, and by mid 1972 Solihull was producing 1000 cars per week. This really was a remarkable achievement some eight years after its introduction, but proved the rightness of the concept, even if by Spen King‘s own admission, Rover purchasing the V8 from General Motors was not unanimously supported within the company.

Rover P6

The P6 swan song, the 2200 models, launched in 1974. Very evident in this shot, is the bolder front end treatment that was introduced in the 1970 facelift.

In March 1972, Rover and Triumph merged under the control of Sir George Farmer. The 12-man board consisted of seven from Rover and five from Triumph. However, in May 1973 Sir George retired from BLMC to be replaced by Bill Davis, a former BMC man, as managing director of Rover Triumph. Bill Davis’ tenure was short-lived as following George Turnbull’s sudden resignation from British Leyland in September 1973, he was promoted to the firms main board as director of production, a similar position to the one he had occupied at BMC. The new boss of Rover-Triumph was now Bernard Jackman. While this was going on, production of the larger P5B luxury saloon ceased in June 1973 leaving the P6 as the sole Rover badged car as the various Land Rover models began to dominate the scene at Solihull.

The last major technical change to the P6 took place in October 1973, when the engine was enlarged (by increasing the bore from 85.7mm to 90.5mm) to 2205cc, thus creating the 2200SC and TC models. The emphasis of the revised engine was definitely on mid-range driveability as opposed to outright power, although the new models were marginally quicker than the models they replaced. However, the P6 was not a particularly light car, and even though it was blessed with high overall gearing, it was not especially economical – and this was very much a factor during the early 1970s.

What Car? magazine tested the 2200TC in October 1974 and were still reasonably enthusiastic about it, concluding that, ‘despite its age the Rover still looks pleasant and dignified. It represents the strong resistance to the change inherent in the British motor industry, but is none the worse for this. It rides and corners well, but still has drawbacks; lack of space for luggage and passengers, and only mediocre performance.’

In February 1974 Motor magazine interviewed the managing director of Rover-Triumph, Bernard Jackman. He reflected on his family’s long association with the company and the Rover P6 , of which he said: ‘I think it really went into production a year to soon. Certainly a lot of the body tooling wasn’t right and we were having to compromise.

‘I think we were rather provoked into putting it into production in 1963 because the Triumph 2000 was appearing at the same time and there was this competitive pressure. Most people felt that we were a bit premature and we rushed it . Production was running at about 200 to 250 a week when I came here and had to be held at that level in order to get the vehicle right.

‘Once it was right I had to engineer a very rapid increase in production, up to 600-650 a week by about 1965 on a single shift . Then Bill Martin-Hurst did the V8 engine deal and when we put that into the 2000 it increased the potential of the vehicle very considerably. We went on to two shifts and production went up to 800-850 a week.

‘So the £11.5 million invested at the time in the project has certainly paid off. It amazes me now to think that one could ever have done the new engine and gearbox and all the plant for the car assembly and finishing including the new buildings all for a mere £11.5 million.’

Bernard Jackman was also responsible for putting the V8 engine into production. ‘It was one of the smoothest jobs we ever had , for it was a brilliantly designed engine from a manufacturing point of view. Its assembly costs are much less than for the four-cylinder engine, and its material costs are not very much more. It was a bit of a squeeze to get the V8 into the 2000 frame, but because it was wide and short we could just do it, with a few modifications to the panels and a few bulges here and there in the underskin. It was really a stroke of genius on Martin-Hurst’s part to think of it.’

On the subject of quality, Jackman stated: ‘There was a tendency at one time for production and manufacturing considerations at Rover to override quality and things that we would stop going out now used to get out, but we have really clamped down on that over the past few years and stopped it. We get rogue cars going out of course, everyone does, but we have a good reputation for quality.

‘In fact, only this morning a high ranking army officer told me they regard army Land-Rovers as the acme of quality of British military vehicle manufacture. I find this rather touching. But we are not home and dry on this quality thing by any means. It is a constant battle, and rightly so for otherwise people get complacent and standards start to slip.

‘Quality and design are a completely integrated thing. If you have a poor design, no matter what you do on the line or how good your facilities are you will still turn out a poor product. It is not possible for fellows on the assembly line to make good the deficiencies of bad design. In the Rover organisation as a whole quality therefore begins in engineering. They do try very hard to give us the ability to produce a satisfactory job, and the facilities people try to make it almost impossible for an operator to do a job incorrectly.

‘And in all our machining areas we build a lot of monitoring equipment into the plant that switches it off if things aren’t dimensionally correct.’

These were optimistic times and Rover-Triumph talked of boosting annual output from 200,000 to 460,000 within five years. However the focus would now be on the SD1 and SD2 and the factories that would build them. Fortunately P6 sales were holding up remarkably well despite the energy crisis. It appeared that buyers of larger engined cars were downsizing to the P6. In the autumn of 1974, Jaguar was having great difficulty in selling the last E-types.

In December, British Leyland ran out of money and went cap in hand to the government for help. Rover had suffered from strikes in 1974, but nothing like the disruption occurring at Triumph’s plants, which always seemed to be strikebound, even when BLMC had finally run out of money.

In early April the following year, Bernard AB Smith retired as Rover chairman after 50 years with the company.

In the aftermath of the Ryder Report Rover-Triumph was absorbed into Leyland Cars under Derek Whittaker, and former boss Bernard Jackman resigned from British Leyland in August 1975 after a 70-year family association with Rover.

The departure of Smith and Jackman was the effective end of the original Rover Car company as an independent concern and Solihull would later come to miss its firm grip on the tiller as the company gradually lost direction, but that’s another story.

Despite the introduction of worker participation schemes by Leyland Cars’ management, the now state-owned company was plagued by industrial disputes, and in November 1975, Rover P6 production was halted by a two-week strike by 1000 assembly workers. It was an ominous portent for the Rover SD1 which was to be built in greater numbers than the Rover P6 and Triumph 2000/2500 in a brand new building at Solihull in a new spirit of mutual co-operation between management and workers.

On 30 June 1976, the Rover SD1 was officially launched to great acclaim and the P6 faded into the background, although manufacture was to continue into 1977. The SD1 was initially only available in 3500 form, so the decision was taken to continue with production of both the Triumph 2000 and Rover 2200 until the 2300/2600 versions of the SD1 came on stream. Surprisingly production of the P6 3500 also continued. Perhaps Leyland Cars thought that some buyers would be put off by the now long – and getting longer – waiting list for the SD1, and opt for the readily available older model. The end for the P6 came on the 19th March 1977, when both the last 2200 and 3500S were produced. The last car of all was a green 3500S registered VVC 700S.

Rover P6

Boot not large enough? Rover offered the answer with this on-bootlid spare wheel conversion. This is now generally regarded as a cult P6 option, and a must-have for retro-freaks.

So, the Rover P6 was a success, and a sustained one at that – and along with the Triumph 2000, it really did lead the class (in the UK, the two cars created it, really). This success can be seen in the total number of P6s built: 327,000 – which really is a tremendous achievement when one considers that the Rover company was a low-volume specialist producer of up-market cars. What the P6 achieved in doing was hit the market at precisely the correct moment – and offer what buyers really wanted.

It swept away the profligacy of the establishment, and proved that a smaller, lighter car could offer middle management exactly what it wanted. When the P6B came along a few years later, it also caught the spirit of the moment, by appealing to P6 customers who wanted to move on… it was the original V8 powered executive express.

While not a BL product, it did influence its BL-financed replacement: the SD1 followed the same formula, was created by the same design team and was an improvement in all the areas that the P6 was weak in.

Where the two cars differed, sadly, was in the quality of the execution – Spen King put it this way: ‘What happened was that they decided that it was going to have big volume, so built the ruddy great factory at Solihull and then there was a lot of stuff going on about how many hours it should take to build a motor car, and the Austin-Morris people came up with the figure that we should build SD1 in 23 hours.

‘So I think largely on the basis of that, there was this invasion of Rover, in the way the Normans invaded England, or how Triumph invaded BMC at one time. So, the car wasn’t made by the Rover people at all, but by the Austin Morris invasion team.’

In 1977 Leyland Cars was telling the press that they hoped to produce 2000 SD1s a week, which was twice the build rate of the P6 at its peak. The company simply did its sums and instead of producing two executive cars, they now wanted to produce one at twice the production rate. Unfortunately SD1 production never achieved more than 1500 to 1800 cars a week. The other factor that ultimately worked against the SD1 was its size. Conceived in 1971 before the first energy crisis around the 3.5-litre V8, the second energy crisis of 1979/80 killed demand for even the smaller engined 2300/2600 models. It was a situation exploited by Ford with its German built Granada, which was available in a more economical 2-litre version and a market that had once been the domain of the P6 was lost.

This resulted in the later Rover 800 being designed as a smaller car than the SD1. So the P6 was built and designed well – and the quality was right – and success deservedly followed. The Rover SD1 was equally as advanced, and was just what people wanted, but because they left out the quality, its reputation was quickly tarnished. It was a lesson that BL sadly did not learn until it was too late…

Rover P6

The P6 went through its life without being changed in any great detail; it managed this quite happily because the design was so right. Here is one proposal for the 1972 facelift… (Picture: ‘A Collector’s Guide – Classic Rovers – 1945–1986’, by James Taylor).

Posted in: P6
Keith Adams

About the Author:

Created www.austin-rover.co.uk in 2001 and watched it steadily grow into AROnline. Is the Editor of Classic Car Weekly, and has contributed to various motoring titles including Octane, Evo, Honest John, CAR magazine, Autocar, Diesel Car, Practical Performance Car, Performance French Car, Car Mechanics, Jaguar World Monthly, Classic Car Weekly, MG Enthusiast, Modern MINI, Practical Classics, Fifth Gear Website, and the the Motoring Independent... Likes 'conditionally challenged' motors and taking them on unfeasable adventures all across Europe.

35 Comments on "The cars : Rover P6"

Trackback | Comments RSS Feed

  1. Chris Lane says:

    The Rover P6 is one of my favourite cars ever. I have very fond memories of them – it’s one of the finest cars I’ve ever owned.

  2. Hilton Davis says:

    My brother owned a 1968 Rover 2000TC in Zircon Blue with a cream interior – it looked great and oozed quality compared to the competition back then.

    I remember the advertising slogan: “In an age of mass production, thank goodness a Rover is still a Rover.”

    The light facelifts did keep the P6 fresh and it aged well.

  3. Glenn Aylett says:

    I reckon that the fact that the P6 remained in production for 13 years with very few changes to the design says something about the quality of the car. Indeed, the same can be said about the Triumph 2000 which remained in production for a similar period with little change to the design.

    The Rover P6 transformed Rover from being a producer of stolid, conservative cars aimed at retired army officers into the manufacturer of the kind of car a young professional would want. The P6 also remained a reliable and popular car to the end – and that at a time when the quality and sales of other British Leyland cars were collapsing around it.

  4. Hilton Davis says:

    I agree with Glenn… The Rover P6’s sales figures of 327k are mighty impressive. It’s hard to think the P6 has been out of production for 34 years. It’s great to see some of them survive and still appear at Classic Car Shows.

  5. Jemma says:

    The Rover P6 defined the class? Maybe…

    The first? Most definitely not…

    The Rootes Group’s Humber Sceptre was the first of the small ‘executive’ cars: a 1600cc or 1700cc engine, borderline 100mph performance and a six-speed transmission. The Sceptre may not be as famous as the P6 or the Triumph but I can say, from experience, it’s a damn sight nicer to drive, in many respects better to look at and was the very first of the proper sub-3-litre executive cars.

    Indeed, you could even say that the Humber Sceptre is the one car that led over the years to well-known models like the Cavalier SRi and others of that ilk. The first ever sports executive saloon…

  6. Julian Caston says:

    I think the Rover P6 was one of the best young executive cars ever made especially the V8 with the manual gearbox.Even by todays standards the ride comfort is mighty impressive and in V8 form a very fast refined car.
    Shame they dont make them like that anymore.
    Long may the P6 live.

  7. Hilton Davis says:

    A true classic of its time… the 3500 V8 will always remain a favourite “I want one” car. My brother owned a 2000TC (F reg) in the early 70s – colour Zircon blue with light cream leather interior. I actually have a Vanguards model of a 3500 in Almond & black… closest I’ll get to owning one!

  8. Greg Millard says:

    An excellent article, thanks kindly – I bought a 67 2000 TC in 69 while at university in Canada to rallying & ice race (400 studs per tire hand installed with an excentric on a drill which did-in the drill!) – I loved the car so am now am re-living the period & the car buying another identically colored (white with blue panel)TC with 70K miles by the original owner! Yep it has original black CA plates too, Greg

  9. Mark Smith says:

    Have two ’68 2000TC’s today. Wonderfully engineered car, with a ride better than many full size U.S. cars of it’s day, and better than a great many new cars.

    Too bad Rover didn’t try again in the U.S. after failing in ’71. By October 1973, the first oil crisis could have put Rover in the U.S. to stay. Fortunately, they are still out there, and still reasonably priced for those lucky enough to get their hands on one!

    They do require care, but well maintained are top notch cars

  10. George A. Tuthill says:

    I have a Yellow 1969 Rover TC 2000. After being in storage for 20 years because of an unknown problem I have started restoration. After work on the brakes and clutch I began trying to start the engine. No luck! While checking the timing and the “Tensioner for driving chains” I realized that the “Vibration damper for driving chain, upper” was missing???!!! Did the factory forget to install it??
    Does anyone have any coments?
    Naturally I realize that the chain would eventually and did jump time.
    time…..

  11. Keith Mcintyre says:

    IT`S AT THE BOTTOM OF YOUR OIL PAN

  12. Chris Jones says:

    In the 70’s I was a Traffic Police driver and was allocated a P6 to drive. We experimented with the Dunlop Denovo run flat tyres. They made a remarkable difference to handling but unfortunately we could only get 4,000 miles from a set. Due to their expence we dropped them. We had Triumph 2.5 PI’s as well and there was always argument over which was the ‘best’. I think the Triumph’s won.

  13. Ian Nicholls says:

    In a future update I will add a bit more about Peter Wilks , who has been a neglected figure in British automotive history. Apparently he was more than just a gifted engineer , he also had the ability to guess what the market wanted. He was the engineer and product planner that Alec Issigpnis was not.
    I do believe his daughter is attending the Rover P6 national show.

  14. ben says:

    A timeless design.Syill looks as sharp as it did then.They should have based the 75 on this.

  15. My father, Allan Jaycock, was technical service manager for BL in Canada, and had chance to bring home many of the range of cars for weekends to become acquainted with them or to diagnose issues. By far the autos that grabbed neighbourhood attention most were the 3500S models. I loved it when he brought those home because, compared to our A110 Westminster, it took off like a scared cat. The ride, comfort, power and looks were gripping to a young lad like me. There was one particularly stunning Leaf Green example that made the brightwork stand out brilliantly. And with the sidelights on at dusk, that car looked magical to me. My father was critical of a lot of the quality of many BL cars, but he had a lot of respect for the workmanship and design of the P6B, and the design crew at Solihull. I had chance to buy a P6B about 15 years ago, but it had been badly abused, missing bits, and needed much rot removal, inside and out. Had I the money for all that, I’d have restored that baby to sit next to my MGB. It was dissapointing to have to let it go. Those V8 Rovers made a lot of memories for me with my dad. I miss them both 🙂

  16. Anthony Sutton says:

    Rover was never as conservative as most articals make out the p4 was a ground breaking design when it first came out as well, the designs were just so good they stuck around for a long time.

  17. Glenn Aylett says:

    My dad bought a ten year old example in 1981, which apart from a bit of rust and some trim niggles, was immaculate. ( I’d imagine if he bought a Vauxhall Victor 2000 from the same era it would be almost dead). He kept the Rover for 2 years and in that period it rarely went wrong and was a refined, pleasant drive and the wood and leather made it stand out. The only reason he sold it was it was getting on in years and wanted something newer. He bought a Mitsubishi Colt Celeste, reliable enough and a good drive, but unlike the Rover P6, who remembers these now.

  18. WarrenL says:

    @10: OK Hilton, it’s now 2013 and you’ve had the best part of a couple of years since that post to do something! I’d never give mine up now. There’s no finer motor vehicle, and there are still good ones available.

  19. Ford Prefect says:

    What is is interetsing is the ‘wood’ comments in relation to the P6, there never was any in a P6 ex factory!

  20. Ford Prefect says:

    @5, although this comment is a bit late.. were you on drugs when you worte that?? the sceptre in any of its forms isn’t even in teh same ball park as the P6! even though I like them a lot

  21. Will M says:

    The proposed facelift looks strangely like the facelift on the Jag X type…

  22. francis brett francis brett says:

    I think that facelift would have sullied a fine looking car,
    imagine what would have been if we had a world class,strike free solvent Rover car company? I revere the P5B,P6 and SD1 and i always liked the 75,at least we have the memories if nothing else…..

  23. Hilton D says:

    @21 Warren… you’re right, when I visit the town of Thornton Le Dale in Yorkshire on holiday, there is a garage called MATTHEWSONS, who restore and re-sell classic cars and I have seen a couple of P6’s in there – and a P5. Lovely cars!

  24. Richard Davies says:

    The preposed 1972 facelift is a bit like some of the Vauxhalls around at the time.

    IIRC the design of the P6’s monocoque allowed for an easy re-skin.

  25. David 3500 says:

    @Francis Brett:

    “imagine what would have been if we had a world class,strike free solvent Rover car company? I revere the P5B,P6 and SD1 and i always liked the 75,at least we have the memories if nothing else…”

    I hope you don’t think I am being petanic, but back in the 1970s when the P6 was still in production, the Rover Company’s Solihull plant wasn’t known for its regular strikes compared to Austin’s Longbridge and Triumph’s Canley plants. The Rover Company lost its independent identity from the early 1970s as it became more amalgamated with Jaguar and Triumph, although it was still a strike-free and solvent company at that time.

    There is a distinct difference between the Rover Company and the remains of the British Leyland concern of more recent years which are informally (and inaccurately) referred to as simply “Rover”. Obviously the “Rover” identity in its singular, rather convenient form applied from 1986 with the creation of the Rover Group, which comprised of Austin Roveer Group and embraced Land Rover Ltd.

  26. Glenn Aylett says:

    A very well loved car in its day, even if I think the Triumph 2000 beats it for overall refinement and styling after 1970.

  27. didierz65 didierz65 says:

    As a mechanic apprentice, a dark brown Rover 2200TC was one of the first car I worked on, “You need the special spanners for this one, it’s English they don’t do metrics” I fell in love with Rovers at that point, it was way classier than the French cars (R20, 504/5 or even a CX) and was looking way better than my boss’ bmw2500 with wood (yes, there was wood door cappings and a bit on the dash) and leather. Obviously, I’d love to have one, but my 75 Conny manages 50mpg, so I can afford it whereas the 2200 would return 25-30 at best, a no-no for the time being, still I wish..

  28. Gareth Hughes says:

    My Grandfather had a 2000TC in red WPL410G are you still out there?

  29. mike price-james says:

    Here is a 1963 road test for a rover 2000

    http://www.flickriver.com/photos/triggerscarstuff/sets/72157641669334354/

  30. mike price-james says:

    Rover 2000 TC & Triumph 2.5 Pi Twin Road Test

    https://www.flickr.com/photos/triggerscarstuff/8412415196/in/photostream/

  31. Nate says:

    The Rover P6’s front-end always seem fussy looking, imho the unused 1972 facelift proposal in the last image gives the P6 a much cleaner look.

    • christopher storey says:

      I hated the face lift. The original design was so classical , enhanced by the fact that it was devoid of ornament . For my taste, the 1971 update just made it look typically 1970s tacky

Have your say...